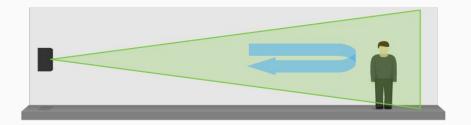
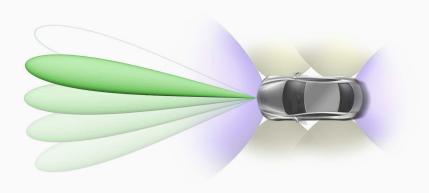


KROPOTOV RADAR SENSOR

Russia's First Compact Radar with Active Phased Arrays



So, What Is Radar?



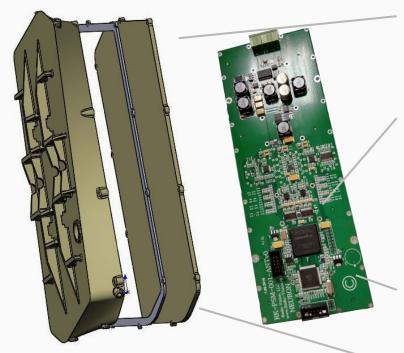
Best things come in small packages

"Large Size Radars"

Kropotov Radar Sensor

Smaller. Lighter. Cheaper Than Any Other Active Phased Array Radars.

Our compact radar is ideal for any kind of scanning and visualization


Kropotov Radar Sensor

and much more...

Take a look inside Kropotov Radar Sensor

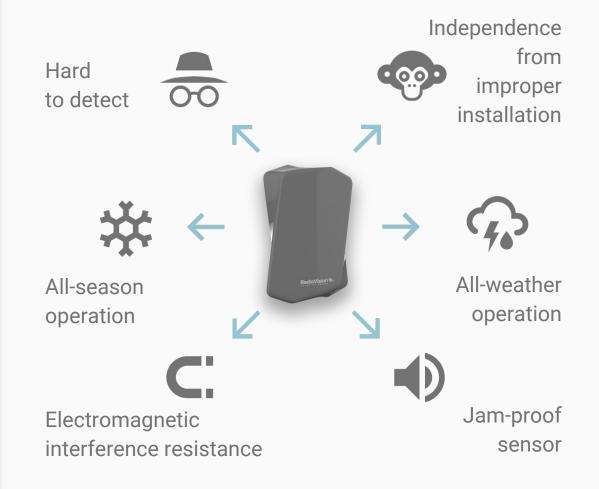
Karfidov Lab and Skolkovo Foundation Center for Collective Use with micro-grant support

Multi-core system: FPGA + microprocessor, proprietary noise reduction algorithms

$$U_{s}(t) + U_{n}(t)
ightarrow \left\{ egin{array}{c} \displaystyle \int_{-\infty}^{+\infty} (U_{n}(t))dt = 0 \ (1) \ \displaystyle \int_{-\infty}^{+\infty} (U_{s}(t) + U_{n}(t))dt = U_{s}(t) \ (2) \ \displaystyle \end{bmatrix}
ightarrow U_{s}(t) \ \displaystyle Module \end{array}
ight.$$

Proprietary antenna and microwave part design PCT/RU2016/000892

Ultra-high Molecular Weight Polyethylene



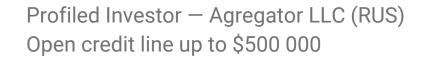
Brief Tech Specs

Operating frequency	2400-2750 MHz	
Overall dimensions with bracket	30*20*4 cm	
Range of detectable moving velocity	from 0.1 to 12 m/s	
Detection zone width (at the end of the zone with its maximum length)	3 m	
Detection zone height (at the end of the zone with its maximum length)	3 m	
Detection zone Length	0100 m	
Power	0.01 W	

Why Kropotov Radar Sensor is Different?

Radar Sensor Market worth \$30.67 Billion by 2022 at a CAGR of 6.94%

"...That said, I don't think you need LIDAR. I think you can do this all with passive optical and then with maybe one forward RADAR... if you are driving fast into rain or snow or dust. I think that completely solves it without the use of LIDAR. I'm not a big fan of LIDAR, I don't think it makes sense in this context."


Security Market — the first application for Kropotov radar sensor

Global market for security sensors is expected to grow to nearly \$4.6 billion by 2022

In 5 Years 0.5% of world market 5% of Russian market

Kropotov radar sensor sales model – B2B

Sales Targets Kropotov Radar Sensors for security market applications

Sales forecast (\$USA)	2018	2019	2020	2021	2022
Sales volume (\$)	275 000	825 000	3 300 000	6 600 000	16 500 000
Number of units	250	750	3 000	6 000	15 000
Average cost per unit (\$)	1 100	1 100	1 100	1 100	1 100
Prime cost (\$)	330	330	330	330	330
Gross Profit (\$):	192 500	577 500	2 310 000	4 620 000	11 550 000

Radio Vision Management Team

Vladimir Kropotov, CTO

Technology author. Mathematician, computer programmer, inventor of various electronic devices.

Dmitriy Shelestov, CEO

Responsible for overseeing the company's entire operation and strategic management with long-term objectives.

Alexander Chizhov, CMO

Responsible for building strategic partnerships to drive investments and assessing new marketing opportunities.

Fundraising cycle: Seed Round

\$1 000 000

2008

A noise reduction algorithm for a newly-developed radar was created.

2015

Reference design for different market applications. First successful experiments.

2018

Successful sales of Kropotov Radar Sensors in Russian and European security market.

2012

A microwave radar prototype for testings was made.

Radio Vision received the status of Skolkovo resident.

The first project "Short-range radar".

2017

Creation of a pre-sale Kropotov radar sensor

prototype. Testings, certification.

2019

Developing versions for drones and autonomous vehicles.

Who expressed high interest in Kropotov radar sensor

Our Success is Inevitable

Dmitriy Shelestov ds@radiovision.ru +7 925 081-1921

www.radiovision.ru/ suv-p.pdf

- Breakthrough technology on a global scale;
 - Truly Unique Product;
 - Expert Team;
 - Potential customers among solid companies from Russia and the European Union;
- The total value of radar sensor market is estimated at US \$30 billion.